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One-Electron Atoms

7-1 Introduction

In this chapter we begin our quantum mechanical study of atoms by treating the
simplest case, the one-electron atom. This is also the most important case. For instance,
the one-electron atom hydrogen is of historical importance because it was the first
system which Schroedinger treated with his theory of quantum mechanics. We shall
see that the eigenvalues which the theory predicts for the hydrogen atom agree with
those predicted by the Bohr model and observed by experiment. This provided the
first verification of the Schroedinger theory.

There is much more to the Schroedinger theory of the one-electron atom than its
prediction of the eigenvalues, because it also predicts the eigenfunctions. Using the
eigenfunctions, we shall learn about the following properties of the atom: (1) the
probability density functions, which give us detailed pictures of the structure of the
atom that do not violate the uncertainty principle as do the precise orbits of the Bohr
model, (2) the orbital angular momenta of the atom, which were incorrectly predicted
by the Bohr model, (3) the electron spin and other effects of relativity on the atom,
which were also incorrectly predicted by the Bohr model, and (4) the rates at which
the atom makes transitions from its excited states to its ground state—measurable
quantities that were not predictable at all by the Bohr model.

Above and beyond its historical and intrinsic importance, the Schroedinger theory
of the one-clectron atom is of great practical importance because it forms the founda-
tion of the quantum mechanical treatment of all multielectron atoms, as well as of
molecules and nuclei. In later chapters this will become very apparent.

The one-electron atom is the simplest bound system that occurs in nature. But it is
more complicated than the systems we have dealt with in the preceding chapters
because it contains two particles, and because it is three dimensional. The system
consists of a positively charged nucleus and a negatively charged electron, moving
under the influence of their mutual Coulomb attraction and bound together by that
attraction. The three-dimensional character of the system allows it to have angular
momentum. We shall see that interesting new quantum mechanical phenomena arise
as a consequence. Quantum mechanical phenomena involving angular momentum
could not arise in our earlier considerations, which dealt with only one-dimensional
systems,

The three-dimensional character of the atom causes difficulty because it complicates
the mathematical procedures that must be used in its treatment. However, the pro-
cedures are straightforward extensions of the simpler ones we have used on one-
dimensional systems, so no conceptual problems should arise. We shall avoid practical
problems by avoiding the actual solution of the more difficult equations. And certain
other details, of interest to some but not all students, will be relegated to appendices.
We shall present in this chapter enough of the mathematics to make it apparent how
it is related to that used in the preceding chapters. But here we shall emphasize the
physical considerations underlying the mathematics, the results which it yields, and
the interpretation of the results.

The fact that the one-electron atom contains two particles causes no difficulty at
all, if use is made of the reduced mass technique. This technique, discussed in Section
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Left: In an actual one-electron atom, an electron of mass m and nucleus of
mass M move about their fixed center of mass. Right: In the equivalent
model atom, a particle of reduced mass u moves about a stationary
nucleus of infinite mass.

4-7, models the actual atom by an atom in which the nucleus is infinitely massive and
the electron has the reduced mass p given by

where m is the true mass of the electron and M is the true mass of the nucleus. The
reduced mass electron moves about the infinitely massive nucleus with the same
electron-nucleus separation as in the actual atom. Since the infinitely massive nucleus
must be completely stationary, it is necessary to treat only the motion of the reduced
mass electron in the model atom, and the problem is therefore simplified from one
involving a pair of moving particles to one involving only a single moving particle.

In classical mechanics, the motion of the reduced mass electron about the stationary
nucleus in the model atom exactly duplicates the motion of the electron relative to the
nucleus in the actual atom. Furthermore, the total energy of the model atom, which
is just the total energy of its reduced mass electron, equals the total energy of the
actual atom in a frame of reference in which its center of mass is at rest. The student
may have seen a proof of these results of classical mechanics in connection with the
motion of a planet about the sun, or some other system involving the motion of two
particles. It is not difficult to prove that the same results are obtained in quantum
mechanics, but we shall not bother to do so here. Figure 7-1 indicates the behavior of
the electron and the nucleus in the actual atom and in the model atom. In both cases
the center of mass of the atom is at rest.

7-2 Development of the Schroedinger Equation
We consider, therefore, an electron of reduced mass x4 which is moving under the in-
fluence of the Coulomb potential

—Ze*
4"750\/202 + y2 + 22
where x, y, z are the rectangular coordinates of the electron of charge —e relative
to the nucleus, which is fixed at the origin. The square root in the denominator is

just the electron-nucleus separation distance r. The nuclear charge is +Ze (Z = 1 for
neutral hydrogen, Z = 2 for singly ionized helium, etc.).

(7-2)

V =V(z,yz2) =



Sec. 7-3 SEPARATION OF THE TIME INDEPENDENT EQUATION 255

As a first step, we must develop the Schroedinger equation for this three-dimensional
system. We do this by using the procedure indicated in Section 5-4. We first write the
classical expression for the total energy E of the system

i(pi 4P+ )+ V(zyd) =E (7-3)

The quantities p,, p,, p, are the z, y, z components of the linear momentum of the
electron. Thus the first term on the left is the kinetic energy of the system, while the
second term is its potential energy. Now we replace the dynamical quantities p,, p,, p.»
and E, by their associated differential operators, using an obvious three-dimensional
extension of the scheme in (5-32). This gives us the operator equation

I ( 0° o | o ) . 0
——=+=+= V(z,y,2) = ih— 7-4
2Hax2+ay2+az2 + V(2,9,7) £y (7-4)
Operating with each term on the wave function
Y =Y(z,y,z2,1) (7-5)

we obtain the Schroedinger equation for the system

2 Z\P- 2\P' 2\11' 2,
_ [8 @yzt)  TH@ya) | 4 (x,yzt)} Vg @y

2u 0x® oy* 02
o¥'(z,y,2,t

= ik _(%_;V_) (7-6)

It is often convenient to write this as
— 2—'v2qf + VY =ik %‘? (1-7)

where we use the symbol
2 2 2

veo 2 +a +a (7-8)

ox? 0y  07°

which is called the Laplacian operator, or “del squared,” in rectangular coordinates.

Many of the properties of the three-dimensional Schroedinger equation, and of the
wave functions which are its solutions, can be obtained by obvious extensions of the
properties developed in the preceding chapters. For instance, it is easy to show by the
technique of separation of variables, used in Section 5-5, that since the potential
function V(x,y,z) does not depend on time there are solutions to the Schroedinger
equation which have the form

\F(xuy’zat) = "P(x,?/az)eﬁiEt/h (7-9)
where the eigenfunction y(x,y,z) is a solution to the time-independent Schroedinger
equation

h2
" Vi(2,y,2) + V(z,y,2)9(2,9,2) = Ep(x,y,2) (7-10)

Note that in three dimensions this equation is a partial differential equation because
it contains three independent variables, the space coordinates x, ¥, 2.

7-3 Separation of the Time-Independent Equation

The time-independent Schroedinger equation for the Coulomb potential can be solved
by making repeated applications of the technique of separation of variables to split
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the partial differential equation into a set of three ordinary differential equations, each
involving only one coordinate, and then using standard procedures to solve these
equations. However, separation of variables cannot be carried out when rectangular
coordinates are employed because the Coulomb potential energy is a function
V(z,y,z) = —Ze2/47-reox/a:2 + y® + 2% of all three of these coordinates. Separation
of variables will not work in rectangular coordinates because the potential itself
cannot be split into terms, each of which involves only one such coordinate.

The difficulty is removed by changing to spherical polar coordinates. These are the
coordinates r, 0, @, illustrated in Figure 7-2. The length of the straight line connecting
the electron with the origin (the nucleus) is r, and 6 and ¢ are the polar and azimuthal
angles specifying the orientation of that line. Now the distance between the electron
and the nucleus is just r. So in spherical polar coordinates the Coulomb potential can

be expressed as a function of a single coordinate r = \/xz + y? + 22, as follows
—Zé*

4rreyr

V=V = (7-11)
Because of this great simplification in the form of the potential, it then becomes
possible to carry out the separation of variables on the time-independent Schroedinger
equation, as we shall soon see.

The space derivatives in the time-independent Schroedinger equation also change
form when the coordinates are changed from rectangular to spherical. A straight-
forward, but tedious, application of the rules of differential calculus shows that the
time-independent Schroedinger equation can be written as

h2
— i;szp(r,G,(p) + V(r)y(r,0,¢) = Ey(r,0,¢) (7-12)

where

z_Li(zi) 1 o 1 3(- i) ]
v Zar\ or + r®sin® 6 0¢* + sin 60\ f 00 (7-13)
is the Laplacian operator in the spherical polar coordinates r, 6, ¢. For the details
of the coordinate transformation leading to (7-12) and (7-13), the student should
consult Appendix I. A comparison of the forms of the Laplacian operator in rec-
tangular and spherical polar coordinates, (7-8) and (7-13), shows that we have simplified
the expression of the potential energy function at the expense of considerably compli-
cating the expression of the Laplacian operator in the time-independent Schroedinger
equation that must be solved.
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Nevertheless, the change of coordinates is worthwhile because it will allow us to
find solutions to the time-independent Schroedinger equation of the form

p(r.0,¢) = R(r)O(0)0(9) (7-14)

That is, we shall show that there are solutions y(r,0,¢) to (7-12) that split into products
of three functions, R(r), ©®(0), and ®(¢), each of which depends on only one of the
coordinates. The advantage lies in the fact that these three functions can be found by
solving ordinary differential equations. We show this by substituting the product form,
w(r,0,¢) = R(r)Q(0)D(¢), into the time-independent Schroedinger equation obtained
by evaluating the Laplacian operator in (7-12) from (7-13). This yields
B [1 0 ( 8R®(D) 1 9°ROD 1 0 ( 06 8R®<D):|
2or or 06

+ V()RO® = EROD

r’sin®6 0¢* r®sin 6 00

Carrying out the partial differentiations, we have

0D d RO d4*0 RO d d®
Iy T e e g nb—
2y #odr\ dr r¥sin® 0 do* sm@d@ do

+ V(r)ROD = EROOD

In this equation we have written the partial derivative dR/dr as the total deriva-
tive dR/dr since the two are equivalent because R is a function of r alone. The
same comment applies to the other derivatives. If we now multiply through by
—2ur? sin% 6/ ROPA?, and transpose, we obtain

2, 2

1 d(D_ _sin Hi(rzil!;) _smB d( 91(2) ——'2—”Y’2Sin26[E .
® d¢* R dr\ dr O df do I

As the left side of this equation does not depend on r or 6, whereas the right side does
not depend on ¢, their common value cannot depend on any of these variables. The
common value must therefore be a constant, which we shall find it convenient to
designate as —mj. Thus we obtain two equations by setting each side equal to this
constant

= —mi0 (7-15)

and

1 d( 2dR) 1 d( ) 6d®) 2u PLE — V()] = m
——=—\r—] - — | sin 6 — -~ V(r
Rdr\ dr Osin 6 d6 do r ~ sin? 6
By transposing, we can rewrite the second equation as
1 d( 2alR) 2,n m? 1 d( . d@)
——|r— =——————|sinf—
Rdr\ dr de

sin?§  Osin 0 df

Since we have here an equation whose left side does not depend on one of the variables
and whose right side does not depend on the other, we conclude again that both sides
must equal a constant. It is convenient to designate this constant as /(/ + 1). Thus we
obtain, by setting each side equal to /(/ 4 1), two more equations

1 d d® m2O
— — —|sin§ — =11+ 1O 7-16
sm9d0( . d6)+ g =+ D (7-16)
and
1d 2dR) 2u R
—_— —[E — V(H]IR = I(] 1) — 7-17
r? dr(r dr + hz[ ()] 7+ )r2 ( )
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We see that the assumed product form of the solution, (r,0,9) = R(r)O ()P (¢), is
valid because it works! We also see that the problem has been reduced to that of
solving the ordinary differential equations, (7-15), (7-16), and (7-17), for @(g),
0 (0), and R(r).

In solving these equations, we shall find that the equation for @ (¢) has acceptable
solutions only for certain values of m,. Using these values of m, in the equation for
©(0), it turns out that this equation has acceptable solutions only for certain values
of I. With these values of / in the equation for R(r), this equation is found to have
acceptable solutions only for certain values of the total energy E; that is, the energy
of the atom is quantized.

7-4 Solution of the Equations

Consider (7-15) for ®(¢). By differentiation and substitution, the student may easily
verify that it has a particular solution

O(p) = e™?

(The discussion following Example 7-5 explains why this particular solution is used.)
Here we must, for the first time, explicitly consider the requirement of Section 5-6
that the eigenfunctions be single valued. This demands that the function ®(g) be
single valued, and the demand must be considered explicitly because the azimuthal
angles ¢ = 0 and ¢ = 2= are actually the same angle. Thus, we must require that ®(¢)
has the same value at ¢ = 0 as it does at ¢ = 2, that is

O(0) = O(27)
Evaluating the exponential in the particular solution ®(¢), we obtain
eimIO — e'imﬂn’

or
1 = cos m2m + isin m2w
The requirement is satisfied only if the absolute value of m, has one of the values
lm| =0,1,2,3,... (7-18)

In other words, m, can be only a positive or negative integer. Thus the set of functions
which are acceptable solutions to (7-15) are

D, () = e™? (7-19)

where m, has one of the integral values specified by (7-18). The quantum number m,
is used as a subscript to identify the specific form of an acceptable solution.

In solving (7-16) for the functions ©(6), the procedure is very nearly the same as that
used to obtain analytical solutions of the time-independent Schroedinger equation
for the simple harmonic oscillator potential. Interested students are referred to
Appendix H, which explains this quite lengthy procedure. Here we shall only quote
the results. It is found that solutions to (7-16) which are acceptable (remain finite) are
obtained only if the constant / is equal to one of the integers

I=1my, |m| + 1, |m]| +2,|m] +3,... (7-20)
The acceptable solutions can be written

0,,,(6) = sin'™ O F,,, ((cos ) (7-21)

The Fy,,,(cos 0) are polynomials in cos 6, which have forms that depend on the value
of the quantum number [ and on the absolute value of the quantum number m,. Thus
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it is necessary to use both of these quantum numbers to identify the functions 0,,, (6)
that are acceptable solutions to the equation. Examples of these functions will be
presented in Section 7-6.

The procedure used in the solution of (7-17) for the functions R(r) is also very
similar to that used for the simple harmonic oscillator potential. It is found that there
are bound-state solutions which are acceptable (remain finite) only if the constant E
(the total energy) has one of the values E,, where

= — Lze‘l (7-22)
" (d7reg)?2h%n*
In this expression the quantum number n is one of the integers
n=I14+1,142,143,... (7-23)
The acceptable solutions are most conveniently written as
12
Ru) = 2 Z) 6, (2) (124
do o
where the parameter a, is
4mreyh®
ay = —2 (7-25)
ue

The G, (Zr[ay) are polynomials in Zr/a,, with different forms for different values of
n and /. Thus both of these quantum numbers are required to identify the different
functions R,,,(r) that are acceptable solutions to the equation. But the allowed values
E, of the total energy carry only the quantum number # as a label since they depend
only on the value of that quantum number. Examples of the functions R,,(r) will be
presented in Section 7-6.

7-5 Eigenvalues, Quantum Numbers, and Degeneracy

One of the important results of the Schroedinger theory of the one-electron atom is the
prediction of (7-22) for the allowed values of total energy of the bound states of the
atom. Comparing this prediction for the eigenvalues

uZe* 13.6 eV

(4mep)2h%n® n®
with the predictions of the Bohr model (see (4-18)), we find that identical allowed
energies are predicted by these treatments. Both predictions are in excellent agreement
with experiment. Schroedinger’s derivation of (7-22) provided the first convincing
verification of his theory of quantum mechanics. Figure 7-3 illustrates the Coulomb
potential ¥(r) for the one-electron atom, and its eigenvalues E,.

What is the relation between the Coulomb potential and its eigenvalues, and the
potentials studied in Chapter 6 and their eigenvalues? One obvious difference is that
the quantum mechanical calculations leading to the eigenvalues of the Coulomb
potential are appreciably more complicated. But the Coulomb potential is an exact
description of a real three-dimensional system. The potentials previously treated are
approximate descriptions of idealized one-dimensional systems, which are designed
to simplify the calculations. Part of the complication for the Coulomb potential is also
due to its spherical symmetry, which forces the use of spherical polar coordinates
instead of rectangular coordinates.

n=
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The Coulomb potential ¥(r) and its eigenvalues E,,. For large values of
the eigenvalues become very closely spaced in energy since E, approaches
zero as n approaches infinity. Note that the intersection of V(r) and E,,,
which defines the location of one end of the classically allowed region,
moves out as n increases. Not shown in this figure is the continuum of
eigenvalues at positive energies corresponding to unbound states.

The similarities are much more fundamental than the differences. For the Coulomb
potential, as for any other binding potential, the allowed total energies of a particle
bound to the potential are discretely quantized. Figure 7-4 makes a comparison
between the allowed energies for a Coulomb potential and for several one-dimensional
binding potentials. In this figure the Coulomb potential represents a crosscut along a
diameter through the one-electron atom. Note that all the binding potentials have a
zero-point energy. That is, in all cases the lowest allowed value of total energy lies
above the minimum value of the potential energy. Associated with its zero-point
energy, the one-electron atom has a zero-point motion like other systems described
by binding potentials. In the following section we shall see that this phenomena can
give us a basic explanation of the stability of the ground state of the atom.

Although the eigenvalues of the one-electron atom depend on only the quantum
number n, the eigenfunctions depend on all three quantum numbers #, /, m, since they
are products of the three functions R,,(r), 0,,,(6), and @, (¢). The fact that three

+ oo +co
Finite Simple harmonic —o0 —eo
square well oscillator Coulomb
FIGURE 74

A comparison between the allowed energies of several binding potentials.
The three-dimensional Coulomb potential is shown in a cross-sectional
view along a diameter; the other potentials are one-dimensional.
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quantum numbers arise is a consequence of the fact that the time-independent Schroedinger
equation contains three independent variables, one for each space coordinate. Gathering
together the conditions which the quantum numbers satisfy, we have

Im)| =0,1,2,3,...
I=|my, Im| + 1, |m) + 2, |m| +3, ... (7-26)
n=1+1,14+2,1+3,...

These conditions are more conveniently expressed as

n=1,2,3,...
1=0,1,2,...,n—1 (7-27)
my=—I, —I+1,...,0,...,+1—1,1

Example 7-1. Show that the conditions of (7-27) are equivalent to those of (7-26).
According to (7-26) the minimum value of / is equal to |m,|, and the minimum value of |m,]
is 0. Thus the minimum value of /is 0 and the minimum value of n, which is equalto / + 1,
is 0 + 1 = 1. Since n increases by integers without limit, the possible values of n are n = 1,
2,3,....Fora given n, the maximum value of / is the one satisfying the relationn =/ + 1,
thatis, / = n — 1. Consequently the possible values of /lare/ =0, 1,2,...,n — 1. Finally,
for a given /, the largest value which |m,| can assume is |m,| = /. Thus the maximum value of
my is +/and the minimum value is ~/, and it can assume only the values m, = —I, —I + 1,
0, .., +1 =1, +1 <

Because of its role in specifying the total energy of the atom, # is sometimes called
the principal quantum number. Because the azimuthal, or orbital, angular momentum
of the atom depends on /, as we shall soon see, / is sometimes called the azimuthal
quantum number. We shall also see that if the atom is in an external magnetic field
there is a dependence of its energy on m,. Consequently, m, is sometimes called the
magnetic quantum number.

The conditions of (7-27) make it apparent that for a given value of n there are
generally several different possible values of / and m,. Since the form of the eigen-
functions depends on all three quantum numbers, it is apparent that there will be
situations in which two or more completely different eigenfunctions correspond to
exactly the same eigenvalue E,. As the eigenfunctions described the behavior of the
atom, we see that it has states with completely different behavior that nevertheless have
the same total energy. In physics the word used to characterize this phenomenon is
degeneracy, and eigenfunctions corresponding to the same eigenvalue are said to be
degenerate. There is little relation to the common usage of the word; degenerate
eigenfunctions are not at all reprehensible!

Degeneracy also occurs in classical mechanics and in the related old quantum
theory. In the discussion of elliptical orbits of the Bohr-Sommerfeld atom in Section
4-10, we indicated that the total energy of the atom is independent of the semiminor
axis of the ellipse. Thus the atom has states with very different behavior, that is, with
the electron traveling in very different orbits, which nevertheless have the same total
energy. Exactly the same phenomenon occurs in planetary motion. This classical
degeneracy is comparable to the / degeneracy that arises in the quantum mechanical
one-electron atom. The energy of a Bohr-Sommetfeld atom, or of a planetary system,
is also independent of the orientation in space of the plane of the orbit. This is com-
parable to the m; degeneracy of the quantum mechanical atom.

In either classical or quantum mechanics, degeneracy is a result of certain proper-
ties of the potential energy function that describes the system. In the quantum
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TABLE 7-1. Possible Values of f and m; forn =1,2,3

n 1 2 3
l 0 0 1 0 1 2
ny 0 0 —-1,0, +1 0 -1,0, +1 [=2, —1,0, +1, +2
Number of
degenerate
eigenfunctions
for each / 1 1 3 1 3 5
Number of
degenerate
eigenfunctions
for each n 1 4 9

mechanical one-electron atom, the degeneracy with respect to m, arises because the
potential depends only on the coordinate r, so the potential is spherically symmetrical
and the total energy of the atom is independent of its orientation in space. The /
degeneracy is a consequence of the particular form of the r dependence of the Coulomb
potential.

If an external magnetic field is applied to the atom, then its total energy will depend
on its orientation in space because of an interaction between currents in the atom and
the applied field. We shall study this later, and we shall find that the orientation in
space is determined by the quantum number m,. Thus in an external magnetic field
the degeneracy with respect to m, is removed and the atom has different energy levels
for different m, values. If the external magnetic field is gradually reduced in intensity,
the dependence of the total energy of the atom on m, is reduced in proportion. When
the field is reduced to zero the energy levels that correspond to different values of m,
degenerate into a single energy level, and the corresponding eigenfunctions become
degenerate.

Many properties of alkali atoms can be discussed in terms of the motion of a single
“valence” electron in a potential which is spherically symmetrical, but which does not
have the 1/r behavior of the Coulomb potential. The energy of this electron does de-
pend on /. Thus the degeneracy with respect to / is removed if the form of the r
dependence of the potential is changed. We shall study this phenomenon on a number
of occasions later in this book, and in the process more insight into the origin of the /
degeneracy of the Coulomb potential will be obtained.

From (7-27) it is easy to see how many degenerate eigenfunctions there are, for an
isolated one-electron atom, which correspond to a particular eigenvalue E,. The
possible values of the quantum numbers for » = 1, 2, and 3 are shown in Table 7-1.
Inspection of this table makes it apparent that:

1. For each value of n, there are n possible values of /.

2. For each value of /, there are (2/ 4+ 1) possible values of m,.

3. For each value of n, there are a total of n* degenerate eigenfunctions.

7-6 Eigenfunctions

The mathematical techniques used in quantum mechanics to obtain (7-22) for the
eigenvalues of the one-electron atom are, admittedly, quite complicated compared to
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TABLE 7-2. Some Eigenfunctions for the One-Electron Atom

Quantum Numbers

n ! my Eigenfunctions
1 [Z\3/2
1 0 0 Yoo = —= (_) e—Zrlag
T\a
1 (Z\? Zr
2 0 0 Voo = __(_) (2 _ _) o~Zr/2a0
4./27\d a
1 Z\3/2 7,
2 1 0 Vo190 = —_(_) _r e—Zr/2a0 o5 6
4\/277' g/ Ay
1 Z\3/2 7, .
2 1 +1 Yora1 = ———(-—) ZL e 2riza0 i getio
8\/71- d/ o
1 Z\3/2 Zr 722
3 0 0 Y300 = =\ 27 — 18— + 2 —5|eZr/3%
814/37 \% ao a2
‘ \/E Z\3/? Zr\ Zr
3 1 0 Y310 = == 6 —— ) — e %"/3a0 cos 6
81/ \a a, ) a,
VAL Zr\ Zr L
3 1 +1 Yage1 = == 6 — L )22 o—2risa0 gip Gt
81,/ = \do ay / ag
1 Z\3/2 72,2
3 2 0 Yang = — (_)  e~Zri3a0(3 cos? § — 1)
081 J6n\a) @
1 [/Z\3/2 722 .
3 2 +1 T (—) —5— e~ 2"/300 sin 6 cos feEi?
817 \@/ 45
1 7\3/2 72,2 '
3 2 +2 Yaore = ——‘(—) —5 e~ Zr/30 gin? fete
162\/=\a%/ 4

those used in the Bohr model to obtain the same equation. Putting aside questions
concerning the logical consistency of the postulates of the Bohr model, it is still
reasonable to question whether all the extra work involved in the quantum mechanical
treatment of the one-electron atom is justified by the results obtained. The answer is,
overwhelmingly, yes! We can now find out much more about the one-electron atom
than we possibly can from the Bohr model, because we have the eigenfunctions as well
as the eigenvalues. The eigenfunctions contain a wealth of additional information
about the properties of the atom. The remainder of this chapter, and the following
chapter, will be devoted largely to studying the eigenfunctions and extracting this
information from them.
We know that the eigenfunctions are formed by taking the product

%zm,(”,e,fp) = Rnl(r)(alml(e)q)ml((p)
We also know, from (7-19), (7-21), and (7-23) that for any bound state

D, (¢) = ™

0,,,(6) = sin'™!6 (polynomial in cos 6)
and

R, (r) = e~‘eonstentr/nyl (holynomial in r)
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All the eigenfunctions have basically the same mathematical structure, except that
with increasing values of n and / the polynomials in r and cos 6 become increasingly
more complicated. Table 7-2 lists the one-electron atom eigenfunctions for the first
three values of n. They are expressed in terms of the parameter

drre h?
g =

—=0529 x 107°m = 0.529 A

ue

which the student may recognize as equal to the radius of the smallest orbit of a Bohr
hydrogen atom. The multiplicative constant in front of each eigenfunction has been
adjusted so that it is normalized. In other words, the integral over all space of the
corresponding probability density function equals one, so that in each quantum state

there is probability one of finding the atomic electron somewhere.

Example 7-2. Verify that the eigenfunction y,,,, and the associated eigenvalue E,, satisfy

the time-independent Schroedinger equation, (7-12), for the one-electron atom with Z = 1.
Since the differential equation is linear in y, for the purposes of this verification we can

ignore completely the multiplicative constant 1/8 7/243/% and write the eigenfunction as

p = re~"/2% sin fe'®

This is the simplest case with a nontrivial dependence on all three coordinates. Nevertheless,
the verification of this case should give the student some confidence in the validity of all the
eigenfunctions quoted in Table 7-2.

Before beginning, let us introduce the convenient notation

v =f(r,p)sin 6 = fsin 6
and
w = g(0,p) re”"?% = gre="/2%

This notation will be useful in evaluating the derivatives that enter in (7-12), which is

mBl1 9 5 oy 1 3y 1 2 .oaw y £
T ou 2o\ o +rzsin2()a¢p2+r2sin06_6 sin05g) | t Vv =Ev

First we calculate

oy 0 _ 0
ﬁ—a—e(fsm ) = fcos

.0y .

smBT6 = fsin 6 cos 6
of. Oy .
a—o(smea—o) = f(cos® 6 — sin® )

1 2/ oy f (cos® 6 —sin% 6
—— =sinf— | =5|———F
r2sin 6 90 a0 r2 sin 6

Next we calculate

Fv :
7172 =Py =~y = —fsinb
1 2 f
r2sin? 0 2¢* ~ r2sin O

Adding these two results, we obtain
1 2%y 1 Gl dy
T4 = Asinf—=

r2sin? 0 9¢? + rZsin ¢ ao(sm )

2f'sin® 6 2f'sin 6 2y

20 _gin?0 —1) = — - __ ¥
(cos s H r2sin 6 r2 r2

" r2sin 8
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Then we calculate

oy r
— = e~T/2ao - — e—r/zao)
or & (

2a,
oy rd
r2— = r2e—"/200 — e T/2%
ar ¢ ( 2a,
o dy r? 3r? r3
—|r2=1 = Zre—r/zao N eAr/Zao - e—r/Zao + — e—’f/Zao
or ( or ) & ( 2a, 2a, daj

= 2gre~"/2%| 1 r+r2 =2(1 r+r2
= e ay  8a3] a, 843 v
1 a2 oy 11 1
(XY =2l — — +
r%or (r ar) 2 (r2 raq + SaS) v

Substituting this term, and the term coming from the 6 and ¢ derivatives, into the differential
equation that is supposed to be satisfied, we obtain

#2 21 1 1 2 " E
2u r? ra0+8a% r? vy =ay

or
R® (1 1
—|-—=—|+V=E
uag\r  8ay
Now
E=E pe!
T B(Ameg)?h?
Also
o2
V= _47r50r
and
4megh?
a e
So we have
e (1 ue? &2 et
wAret\r  8(dme)it]  dmer  8(dmeg)h?

Since inspection demonstrates that this equation is satisfied identically, we have completed the
verification. |

7-7 Probability Densities

We begin to extract information from the one-electron atom eigenfunctions by
studying the forms of the corresponding probability density functions

* ok iE,th —iEat/h % — R¥ ()X *
lF Y = Wnlm;e " wnlm;e " - wnlmlwnlmz - Rnl®lmlq)manl®lm;(I)ml

As these are functions of three coordinates, we cannot directly plot them in two
dimensions. Nevertheless, we can study their three-dimensional behavior by con-
sidering separately their dependence on each coordinate. We treat first the r dependence
in terms of the radial probability density P(r), defined so that P(r) dr is the probability
of finding the electron at any location with radial coordinate between r and r + dr.
By integrating the probability density ¥*'¥', which is a probability per unit volume,
over the volume enclosed between spheres of radii r and r + dr, it is easy to show that

P, (r) dr = RE(R(r)r* dr (7-28)
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FIGURE 7-5

The radial probability density for the electron in a one-electron atom for
n = 1,2, 3 and the values of / shown. The triangle on each abscissa indicates
the value of r,; as given by (7-31). For n = 2 the plots are redrawn with
abscissa and ordinate scales expanded by a factor of 10 to show the behavior
of P,;(r) near the origin. Note that in the three cases for which / = Lax
n — 1 the maximum of P,;(r) occurs at ry ;. = n?ay/Z, which is indicated
by the location of the dashed line.

The factor of r? is present on the right side because the volume enclosed between the
spheres is proportional to that factor. The use of the quantum numbers # and / as
labels to specify the form of a particular radial probability density function is obviously
appropriate, but the form of these functions does not depend on the quantum number
m,. Figure 7-5 plots several P,,(r), using dimensionless quantities for each axis.
Inspection of the figure shows that the radial probability densities, for each set of
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the pertinent quantum numbers, have appreciable values only in reasonably restricted
ranges of the radial coordinate. Thus, when the atom is in one of its quantum states,
specified by a particular set of its quantum numbers, there is a high probability that
the radial coordinate of the electron will be found within a reasonably restricted range.
The electron would quite probably be found within a certain so-called shell contained
within two concentric spheres centered on the nucleus. A study of the figure will
demonstrate that the characteristic radii of these shells is determined primarily by the
quantum number #, although there is a small / dependence.

This property can be seen in a more quantitative way by using the expectation value
of the radial coordinate of the electron to characterize the radius of the shell. An
obvious extension of the arguments of Section 5-4 to three dimensions shows that
the expectation value is given by the expression

Tt =frPn,(r) dr

If the integral is evaluated, this yields

n’a, 1 I(+1)

= —l 4 =1 — —— 7-29
N/ { * 2[ n® :|} (7-29)
The values of r,, are indicated in Figure 7-5 with small triangles. It is apparent that
71 depends primarily on n, since the / dependence is suppressed by the factor of 1/2

and the factor of 1/n? in (7-29).

An interesting comparison can be made between (7-29) and (4-16)
2

na,
FBohr =

z

which gives the radii of the circular orbits of a Bohr atom. Quantum mechanics shows
that the radii of the shells are of approximately the same size as the radii of the circular
Bohr orbits. These radii increase rapidly with increasing n. The basic reason is that
the total energy E,, of the atom becomes more positive with increasing », so the region
of the coordinate r for which E, is greater than V(r) expands with increasing n, as can
be seen in Figure 7-3. That is, the shells expand with increasing n because the classically
allowed regions expand.

Example 7-3. (a) Calculate the location at which the radial probability density is a
maximum for the ground state of the hydrogen atom. (b) Next calculate the expectation
value for the radial coordinate in this state. (¢) Then interpret these results in terms of
the results of measurements of the location of the electron in the atom.

(a) The radial probability density for the n = 1, / = 0 ground state is

Py(r) = R{ko(")Rlo(")”2
We take R,o(r) from the r-dependent factor of the first eigenfunction listed in Table 7-2, with

Z =1, and obtain
Pm(r) — e*”/ao e—r/ao r2 = e—27‘/a0 r2

We have ignored normalization (i.e., for simplicity taken the multiplicative constant equal to

one) since it has no effect on what we are about to do. This is to find the maximum in Py4(r)

by evaluating its derivative with respect to r and setting the result equal to zero. That is
dPyy(r) 2

— e~2r/a0 p2 4 o—2r/% Qp
dr a,

= (1 - 1) e 2% 2r =0
a
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The solution to the equation we have obtained is

¥
1—-—=0
ay
or
r=a,

This is the location of the maximum in the radial probability density.
(b) To calculate the expectation value of the radial coordinate r, we evaluate (7-29), with
n=1,l =0, and Z = 1. We obtain

E = ao{l + (1/2)} [1] = 1.5,

(c) We have found that the expectation value of r is somewhat larger than the value of r at
which the radial probability density is a maximum. The reason is that the radial probability
density is asymmetrical about its maximum in such a way that there is a small, but not
negligible, probability of finding fairly large values of r in measurements of the location of the
electron in the atom. So, although the most likely location of the electron is at r = a, (i.e., at
the ground state Bohr orbit radius), the average value obtained in measurements of the
location is 7 = 1.5a,. All these features can be seen by inspecting the top curve of Figure 7-5.

<

Example 7-4. 1In its ground state, the size of the hydrogen atom can be taken to be the
radius of the n =1 shell for Z = 1, which is essentially a, = 4megh?/ue? ~0.5 A. Show
that this fundamental atomic dimension can be obtained directly from consideration of the
uncertainty principle.

The form of the potential function

—e?
V() =

47r60r

tends to cause the atom to collapse since the smaller the distance from the electron to the
nucleus the more negative is the potential energy. This tendency is opposed by the effect of the
uncertainty principle, as follows.

If the electron is located within a region of size R, then any component of its linear momen-
tum must have an uncertainty of approximately

Ap =

x|

This uncertainty reflects the fact that the linear momentum of magnitude p can be in any
direction, so the components can have values ranging from —p to +p. Thus the uncertainty in
any component of the linear momentum also satisfies approximately the relation

Ap =p
Therefore, the electron must have a kinetic energy approximately equal to

R

2u 2u - 2uR?

K =

We see that the kinetic energy becomes more positive with decreasing R, which opposes the
effect of the potential energy to cause collapse.

If the size of the atom is R, its potential energy is approximately
—e?

V= 4meyR
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Energy

FIGURE 7-6 K

The qualitative behavior of the
kinetic energy K, potential energy V
and total energy E of a hydrogen
atom, as functions of the size R of ¢ N
the atom. For small R, K increases
more rapidly than V" decreases be-
cause K o« 1/R* while V o« —1/R. v
For large R, K becomes negligible
compared to V. As a result, E has a
minimum at a certain value of R
(indicated by the mark on the R
axis), and at this size the atom is
most stable.

E=K+V

X

Then the total energy of the atom is approximately

A e?
E=K+V=r—7F5p ———
2uR?  4me R
Obeying the common tendency of all physical systems to be as stable as possible, the atom
will adjust its size so as to minimize its total energy. The existence of an optimum size can be
seen qualitatively by inspecting Figure 7-6, which plots X, V, and E as functions of R. (Note
that R is not the radial coordinate; it is the size of the atom which we are treating as a variable
in order to determine its optimum value.) We can find the most energetically favorable size
quantitatively by differentiating E with respect to R, and setting the derivative equal to zero.
That is

dE 252 e 0
dR ~  2uR® + 4me,RE
Solving this equation for R, we find
4rregh?
= #62 = ay

the size which gives minimum total energy, and therefore the most stable atom.

The uncertainty principle governs the minimum size of the atom because its governs its
minimum energy. This is the zero-point energy of the ground state, which has a size that arises
from its zero-point motion. These simple ideas provide a very satisfactory answer to the
question of the stability of the ground state of the atom. And this is particularly so if we
also consider the discussion following Example 5-13, which shows that in its ground state the
atom does not radiate. |

Figure 7-5 shows that the details of the structure of the radial probability density
functions do depend on the value of the quantum number /. For a given n, the function
has a single strong maximum when / takes on its largest possible value; but additional
weaker maxima develop inside the strong one when / takes on smaller values. Gener-
ally, these weaker maxima are not so important. However, there is a related property
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that can be very important. Inspection of the figure, particularly the expanded plots
forn =2,/ = 0,and n = 2,/ = 1, will demonstrate that the radial probability density
functions have appreciable values near the origin at r = 0 only for / = 0. This means
that only for / = 0 will there be an appreciable probability of finding the electron near
the nucleus.

Another way of seeing this property is to consider the probability density, ¥*¥ =
yp*y, itself. Inspection of the eigenfunctions listed in Table 7-2 will show that for
values of r which are small compared to a,/Z, where the exponential term is slowly
varying, the radial dependence of all the eigenfunctions has the behavior

pocrt r—0 (7-30)

This behavior can easily be verified by direct substitution into (7-17), the equation
that determines the radial dependence of the y. As a consequence, the radial de-
pendence of the probability densities for small r is

yryp ocr® r—0 (7-31)

From this it follows that the value of p*y in a small volume near r = 0 is relatively
large only for / = 0, and decreases very rapidly with increasing /. The reason is that
re>»>rr»rr»..., forr—0.

We see that there is some probability that the electron will be near the nucleus if
I = 0, but very much less probability that this will happen if / = 1, and even less if
I =2, etc. This can have important effects in certain circumstances because the
potential energy of the atom becomes very large in magnitude if the electron is near
the nucleus. We shall see later that this is particularly true for the case of multielectron
atoms, which have essentially the same property. In fact the r* behavior of the eigen-
functions for small r is of predominant importance in the structure of multielectron
atoms. We shall also see later that the r* behavior is due physically to the angular
momentum of the atom, which depends on /.

Now let us proceed to the study of the angular dependence of the probability
density functions

w:lm;wnlml = R:anzgz’fnl(')tm,q)fn,q)m,
From (7-19) we have
D7 (PP, () = €% = 1

Thus the probability density does not depend on the coordinate ¢. The three-
dimensional behavior of Y51, ¥, is therefore completely specified by the product of
the quantity R¥,(r)R,,(r) = P,,(r)[r? and the quantity O, (0)0,,,(6), which plays
the role of a directionally dependent modulation factor.

z
U
FIGURE 7-7 ,
A polar diagram of the factor which

. . out
determines the directional depend- e

ence of the one-electron atom prob-
ability density.
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I1=3m=%3

I=3,m=%1

1=3,m=0

FIGURE 7-8

Polar diagrams of the directional dependence of the one-electron atom
probability densities for / = 3; m; =0, +1, +2, £3.

The form of the factor @7, (6)®,,, (6) is conveniently presented in terms of polar
diagrams, of which one is shown in Flgure 7-7. The origin of the diagram is at the
point r = 0 (the nucleus), and the z axis is taken along the direction from which the
angle 6 is measured. The distance from the origin to the curve, measured at the angle
0, is equal to the value of @lm (6)©,,,,(6) for that angle. Such a dlagram can also be
thought of as representing the complete directional dependence Of ¥yim ¥nim, bY
visualizing the three-dimensional surface obtained by rotating the diagram about the z
axis through the 360° range of the angle ¢. The distance, measured in the direction
speciﬁed by the angles 6 and ¢, from the origin to a point on the surface, is equal to

T (0)0 1, (YO, (9)@,, (@) for those values of 6 and ¢.
In F1gure 7.8 we illustrate an example of the dependence of the form of
F (0)01,,,(0) on the quantum number m,, by a set of polar diagrams for / = 3, and
the seven p0551ble values of m, for this value of /, i.e., form, = —3, -2, —1,0,1,2,3.
Note the way in which the reglon of concentration of OF, (00, (0), and therefore
Yoim Wnim,» shifts from the z axis to the plane perpendicular to the 2z axis as the absolute
value of m, increases. Some features of the dependence of ®f,, (6)9,,(0) on the quan-
tum number / are indicated in Figure 7-9 in terms of a set of polar diagrams for
= +/and /=0, 1, 2, 3, 4. In the case n = 1, / = m; = 0, which is the ground
state of the atom, ¥, Wnim, depends on neither 6 nor ¢ and the probability density
is spher1cally symmetrical. For the other states, the concentration of probability
density in the plane perpendicular to the z axis, when m, = 4/, becomes more and
more pronounced with increasing /. Figure 7-10 is an attempt to overcome the limita-
tions of the two-dimensional printed page using shading to represent the three-
dimensional appearance of the probability density functions for various states of the

one-electron atom.

The probability density functions displayed in these figures generally have a set of
spherical and conical surfaces, defined by certain values of r and 6, on which they
equal zero. These nodal surfaces are analogous to the nodal points at which the
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FIGURE 7-9

Polar diagrams of the directional dependence of the one-electron proba-
bility densities for / =0, 1, 2, 3, 4;m = £l

probability density for a particle bound in a one-dimensional potential equals zero
(see, for example, Figure 6-32). They are a consequence of the fact that the wave
functions for a bound particle must be standing waves with fixed nodes.

However, if a collection of hydrogen atoms has been completely isolated from its
environment, it is not possible to then make measurements on the locations of the
electron in each atom, knowing that they are all in a quantum state with a particular
set of quantum numbers 7, I, m,, and thereby locate the nodal surfaces for that state.
If it could be done it would certainly be remarkable, because it would allow the
determination of the direction of the z axis. And this would amount to finding for each
atom a preferred direction in a space which should be spherically symmetrical,
because the Coulomb potential of the atom V= —Ze*/4me,r is spherically symmetrical.
In fact, it cannot be done because it is generally not possible to observe any of the
probability density patterns of Figure 7-10 in actual measurements on free atoms (i.e.,
atoms in the complete absence of external magnetic or electric fields). The only excep-
tion is the spherically symmetrical state for n =1, I =m, = 0. The reason is that,
with the exception of the state just mentioned, every state is degenerate with several
other states of the same  value. Because the energies of atoms in degenerate states are
identical, it is not possible experimentally to separate them from each other with
techniques that leave the probability density unchanged. Thus, all that can be measured
is the average probability density of the atoms for the entire set of states which are
degenerate with each other. It turns out that the probability density functions, when
averaged together in this manner, always yield a spherically symmetrical function.

Example 7-5. Evaluate the average of the probability density functions for the set of
degenerate states corresponding to the energy E,.
We have

- * * *
2 [¥g00¥a00 T ¥Ya1_1¥21-1 + ¥aro¥ero T Ya11¥e11]
1 [Z\3 Zr\? ZrV¥ (1 1
= Z Yo Zriag - VW Z<in26 + —sin2 0 2 p
128n(a0)e [(2 ao) +(a0) (2 sin® 6 + 2sm + cos
U (ZY oz (5 _ 2V o (Z) T
T 1287 \a, ¢ a, a, (1-32)




n=21l=1m=:1

n=2,l=ml=0

n=2,l=1,ml=0

n=31=2m=1*2

n=3,l=1,ml=0

n=3,l=2,ml=0

FIGURE 7-10

An artist’s conception of the three-dimensional appearance of several one-
electron atom probability density functions. For each of the drawings a
line represents the z axis. If all the probability densities for a given # and /
are combined, the result is spherically symmetrical.
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This spherically symmetrical distribution would be the result of a sequence of measurements
on the locations of the electrons in one-electron atoms of total energy E,. Of course, it cannot
be used to determine the direction of the z axis, and so there is no contradiction with the fact
that this direction was initially chosen in a completely arbitrary way.

Note that even for each subset of states including all possible values of m, for a given nand /
(a “‘subshell’”) the sum of the probability densities is spherically symmetrical. That is, ’»”;oo‘f’zoo
is spherically symmetrical, and also ¢}, ¥y, + ¥iigVa10 + ¥ay;¥err IS spherically sym-
metrical. This important property is illustrated in Figure 7-10. It will be used later in argu-
ments concerning multielectron atoms, and nuclei. <«

On the other hand, consider a situation in which the orientation of the z axis is not
arbitrary because there is a preferred direction defined, for instance, by an external
magnetic or electric field applied in that direction to the collection of hydrogen atoms.
In such a field the quantum states are not degenerate, as we shall see later, and
measurements of the probability density of atoms in a particular state can be per-
formed. In fact, such measurements can be used to determine the direction of the
external field.

To help the student understand the ideas just discussed, let us restate them as follows:

1. If the behavior of an atom is governed by a potential which has spherical symmetry, like
the Coulomb potential which depends only on the distance from the electron to the nucleus,
none of the properties of the atom should single out any particular direction in space because
all directions are equivalent.

2. If the atom is placed in an external electric or magnetic field, the spherical symmetry is
destroyed and the direction defined by the external field becomes unique.

3. When one direction is unique, we choose one axis of our coordinate system to be in that
preferred direction because it simplifies the description of the physical situation. We can
choose other directions, but this unnecessarily complicates the mathematical description. (In
electromagnetism, as an example, when treating a cylindrical wire it is very advantageous to
take one axis of the coordinate system along the axis of the cylinder.)

4. By convention, we call the preferred axis the zaxis. (The convention probably comes from
cylindrical coordinates, in which the axis about which the angular coordinate varies is called
the z axis.) But we could have called the preferred axis the = or ¥ axis, just as well.

5. Even if there is no preferred direction, because no external field is applied to the atom, we
still must choose some arbitrary direction in space for the z axis of our coordinate system. But
in this case the z axis is not unique physically; it is merely a mathematical construct. Therefore,
its choice should have no measurable consequences.

We should also point out that a uniform applied field can serve to define for the atom only a
single preferred direction. As we have indicated, such a field will generally remove part of the
degeneracy of the eigenfunctions, and probability densities that depend on the angle 6 can be
measured. But the probability densities remain independent of the angle ¢, since p*y oc
(Dfnl((p)(DmlOp) = e ™%"™? = | for every eigenfunction. That is, the probability densities
retain their axial rotation symmetry about the direction of the applied field, as certainly must
be the case.

A nonuniform applied field can serve to define additional preferred directions. It is not
surprising that such fields can destroy the axial rotation symmetry of the probability density
of an atom under their influence. Although we have not allowed for this possibility in our
development, because we shall not need to, it is easy to do if necessary by taking particular
solutions to (7-15) in the form ®,, (¢} = cos m;p or (sz(‘p) = sin m, p, instead of in the form
we have taken. With no applied field, or with uniform applied field, the eigenfunction as-
sociated with cos m;¢ is degenerate with the eigenfunction associated with sin m,e, so
measurement of the probability density will always yield a g-independent combination oc
cos?myp + sin?m;@ = 1, just as with the eigenfunctions that we use. In the nonuniform
applied field the degeneracy can be removed, however, and probability densities that do not
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have axial rotation symmetry can be observed. The solutions @, (¢) = cos m;pand O (9) =
sin m, ¢ are frequently used in chemistry since one atom in a molecule is acted on by a highly
nonuniform field produced by the other atoms.

In the next section we shall show that the quantum numbers / and m, are related to
the magnitude L of the orbital angular momentum of the electron, and to its z com-
ponent L, by the relations

L=+I{l+ 1)k
L,=mh

We mention this now because it is an important clue to the interpretation of the
dependence of zp:lmltpﬂ,ml on / and m,. Consider the case m, = /. Then L, = /A, which
is almost equal to L = JI(I + 1) A. In this case the angular momentum vector must
point nearly in the direction of the z axis. For a Bohr atom this would mean that the
orbit of the electron would lie nearly in the plane perpendicular to the z axis, as
illustrated in Figure 7-11. With increasing values of /, the value of /i approaches the
value of v/ I(l + 1) h, so that L, approaches L. This means the angle between the
angular momentum vector and the z axis decreases. In terms of the Bohr picture, this
demands that the orbit lie more nearly in the plane perpendicular to the z axis. An
inspection of the polar diagrams of Figure 7-9 will demonstrate the correspondence
between these features of w:lmanlm, and the picture of a Bohr orbit. For m; = 0 we
have L, = 0, and the angular momentum vector must be perpendicular to the z axis.
In a Bohr atom this would mean that the plane of the orbit contained the z axis. Some
indication of this behavior can be seen in the polar diagram for / = 3, m; = 0 of
Figure 7-8.

Although there are many points at which the quantum mechanical theory of the
one-electron atom corresponds quite closely to the Bohr model, there are certain
striking differences. In both treatments the ground state corresponds to the quantum
number n = 1, and it has the same value of total energy. But in the Bohr model the
orbital angular momentum for this stateis L = nk = h, whereas in quantum mechanics
itis L = \//(l + 1) & = 0, since / = 0 when n = 1. There is an overwhelming amount
of evidence, from measurements of atomic spectra and elsewhere, that shows the
quantum mechanical prediction for zero orbital angular momentum in the ground
state to be the correct one. This prediction is also in agreement with one obtained by
using the techniques we developed earlier to calculate the expectation values of the
total kinetic energy of the electron in the ground state and of the kinetic energy
associated only with radial motion. The two values are found to be equal, implying

FIGURE 7-11

A Bohr orbit lying in a plane nearly
perpendicular to the z axis.
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that the motion is entirely radial in that state. If the Bohr model were modified in a
way that would allow for zero angular momentum states, the orbit for such a state
would be a radial oscillation in which the electron passes directly through the nucleus,
and the oscillation could take place along any direction in space. This would corre-
spond, in a sense, to a spherical symmetrical probability density or charge dis-
tribution, similar to that which is predicted by quantum mechanics and is observed
experimentally. Nevertheless, it is difficult to visualize the motion of an electron in the
ground state of the quantum mechanical atom. That is, it is difficult to make an
analogy to a classical picture, such as the Bohr picture. But this situation is not
unique; it is equally difficult to visualize the motion of an electron traveling through
a two-slit diffraction apparatus.

7-8 Orbital Angular Momentum

We shall now proceed to justify the relations
L, =mjh (7-33)
L=+I{l+ ) (7-34)

between the quantum numbers m, and /, and the z component L, and magnitude L
of the angular momentum of an electron in its “orbital”” motion about the center of
an atom. The justification will take a little effort, but it will be well worth it. We have
just seen that these relations are very useful in interpreting the angular dependence
of the probability density functions for a one-electron atom. As we continue our
study of quantum physics, we shall see that the angular momentum relations are
extremely important in the study of all atoms (and nuclei). The basic reason is that in
most circumstances the z component and magnitude of the angular momenta of the
particles in microscopic systems remain constant. From a classical point of view, this
happens because in most systems the particles move in spherically symmetrical
potentials that cannot exert torques on them. We shall find that, of all the quantities
that can be used to describe atoms (and nuclei), angular momentum and total energy
are about the only ones that do remain constant. A consequence is that most experi-
ments on such systems involve measuring angular momentum and total energy.
Therefore, quantum mechanics must be able to make predictions about angular
momentum, as well as total energy. Another parallel between these two is that both
are quantized. In other words, the relations of (7-33) and (7-34), stating that L, and
L have the precise values m, i and VI(L+ 1) b, are quantization relations just like the
energy quantization relation stating that the total energy E of a one-electron atom
has the precise values —uZ2e'/(4me()?2hn®. Angular momentum quantization is
certainly as important as energy quantization. The only reason that it has not appeared
before in our treatment of Schroedinger quantum mechanics is that the treatment was
restricted to one-dimensional systems. Of course, angular momentum is the dynamical
quantity that sets real three-dimensional systems apart from one-dimensional
idealizations in which it has no meaning.

The angular momentum of a particle, relative to the origin of a certain coordinate
system, is the vector quantity L defined by the equation

L=rxp (7-35a)

where 1 is the position vector of the particle relative to the origin, and p is the linear
momentum vector for the particle. By evaluating the components in rectangular
coordinates of the vector, or cross, product, it is easy to show that the three rectangular
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components of L are

L;c =Yp, — 2Py
L, =zp, —p, (7-35b)
Lz =Xpy — YPy

where x, y, z are the components of r, and p,, p,, p, are the components of p.

In order to study the dynamical quantity angular momentum in quantum mechanics,
we construct the associated operators. This is done by replacing p,, p,, p, by their
quantum mechanical equivalents —ik 0/0x, —ih 9/dy, —ik 00z, according to an
obvious three-dimensional extension of (5-32). Thus the operators for the three
components of angular momentum are

L, = —ih(yg — zi)

0z oy
. 0 0
L, = —lh(25; - xgr;) (7-36)
0 0
L, =—iile— —y—
Zop 1 (x ay y ax)

Because we must use spherical polar coordinates, these expressions must be trans-
formed into these coordinates. Appendix I shows how this can be done. The results are

L., = ih(sin (p% + cotfcos ¢ Bi)

0 ¢
L, = ih(—cos 2 + cot 6 sin i) (7-37)
a0 Yoy
L, = —ih—a'
» a(p

We shall also be interested in the square of the magnitude of the angular momentum
vector L, which is

=L+ L+ L}

As is indicated in Appendix I, in spherical polar coordinates the associated operator is

1 0 0 1 0
L2 = —hﬂ[——( i 6—) ———} 7-38
! sin0ao\" " 3 + sin®  9¢” (7-38)

The first step in deriving the angular momentum quantization equations involves
using the operators to calculate the expectation values of the z component of L, and
of the square of its magnitude, for an electron in the n, [, m; quantum state of a one-
electron atom. According to the three-dimensional extension of the prescription of
(5-34), the expectation value L, is

o 72T
L, =H f WL, Wrtsin 0 dr d6 dg
000

The quantity r2 sin 0 dr d9 dg is the element of volume in spherical polar coordinates,
and the integrations are taken over the complete ranges of all three coordinates.
Because it will simplify the notation, without causing confusion, we shall write this
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expression as

L_z =f‘F*L Y dr

Zop

Here dr stands for the three-dimensional volume element r2sin 6 dr df dg, and |
stands for the three definite integrals {§f53". The same shorthand notation will be
used in the remainder of this chapter, and in the following chapters. Continuing our

calculation of L,, by expressing the wave function as a product of the eigenfunction
and the exponential time factor we obtain

T iE ik, % —iEnt/h
Lz —je " w’"tmlLZ()pe " ’(pnlml dT

or
—E; =f'/):zm;Lzop1/)nzm; dT (7-39)

Similarly, the expectation value of L* is

2
L =f"/):lm;l‘gpu"nlm; dr (7'40)

To evaluate the integrals in the two numbered equations above, we must first evaluate
2
Lzopwmml and Lopw'nlm,'

Example7-6. Evaluate chptpn;ml, where Lzop = —ihd[dp,and where v, n, isa one-electron
atom eigenfunction.
We have
. a‘lpnlm
LiyVuim, = —il Tq)‘l
Since
Vuim, = Rua(r)01, ()2, (9)
we obtain
L0y _do, (9
—ih _a(p—m’ = an(’)@)zm,(e)[_’h st;jl
According to (7-19) .
D, (p) =e™?
e}
do )
;,,;(@ = ime™® = im,®,, (¢)
Thus

o Wi .
i a—;’ = R, (1O, (O)[ —ifiim;®,,, ()]

= mfiR,,;(r)0 4, (0)P,, (9)
and we obtain the answer
Lzopwnlm, = mlhwnlml (7'41)
|

Although we do not have a concise expression for the functions ©;,,,(6), which must
be differentiated to evaluate L:pzpn,ml, we know that these functions satisfy the differ-
ential equation (7-16). Using this fact, it is not difficult to show that

LEp‘Pan, = l(l + l)hzwmm (7'42)
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Using (7-41) from Example 7-6 in (7-39), which is

L_z = fq)szleopwanl dT

it is trivial to evaluate I: We have

Lz = mlhfw:lmlwnlml dT

But we know that this integral has the value one because it is equal to the probability
density integrated over all space, i.e., the probability of finding the electron some-
where. Thus we obtain

L, =mh (7-43)

In a similar fashion we use (7-42) in (7-40), which is

L2 =J¢:zm,Lian my dT
to obtain

B = 10+ DR [ plinin o
L=+ DA (7-44)
Let us compare the results of our expectation value calculations, (7-43) and (7-44),
with the quantization relations we are trying to verify, that can be written

L, =mh (7-45)
L* = I + DA (7-46)

The former are certainly consistent with the latter, but they are not proofs of the latter.
The quantization relations make stronger statements about the values of L, and L%
These relations say that any measurement of the angular momentum of an electron
in the n, I, m, state of the atom will always yield L, = m/i and L2 = [(/ 4 1)k* since,
in that state, these quantities have precisely the values quoted. But the expectation
value relations say only that the values quoted will be obtained on the average, that
is, when the results of a large number of measurements of L, and L*? are averaged.

To complete the proof of the quantization relations is a matter of continuing along
the line we have been following. For example, by calculating the expectation value of
some power of L, say the square Lz, it is found that L? = (m,h)%. This immediately

leads to the conclusion that not only must L, equal m# on the average, i.e., L, = m,
but that L, must equal mh always, i.e., L, = mi. The point is that if L, fluctuated
about its average m,fi it would not be possible to obtain L? = (mh)? because when
averaging a power of L, higher than the first more weight is given to fluctuations above
the average than to fluctuations below the average. In order to proceed with our
interpretation of the angular momentum of one-electron atoms, we defer the details
of this proof to the following section. There we shall also obtain the interesting
conclusion that L, and L, the  and ¥ components of the orbital angular momentum,
do not obey quantization relations.

The fact that y,,,,,, does not describe a state with a definite x and y component of
orbital angular momentum, because these quantities are not quantized, is mysterious
from the point of view of classical mechanics. According to the angular momentum
conservation law of classical mechanics, the orbital angular momentum vector of an
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electron moving under the influence of a spherically symmetrical potential ¥(r) of a
one-electron atom in free space would be completely fixed in direction and magnitude,
and all three components of the vector would have definite values. The reason is that
there would be no torques acting on the electron. The fact that this result is not
obtained in the quantum mechanical theory is a consequence of the fact that there is an
uncertainty principle relation which states that no two components of an angular
momentum can be known simultaneously with complete precision. Because the z
component of orbital angular momentum has the precise value m/i, the relation requires
that the values of the x and y components be indefinite. Upon evaluating L, and L, , the
average values of these components, it is found that both equal zero. Thus the orienta-
tion of the orbital angular momentum vector of an electron moving in a spherically
symmetrical potential must be constantly changing in such a way that its # and y
components fluctuate about an average value of zero, while its z component and
magnitude remain fixed. This result might be called the quantum mechanical orbital
angular momentum conservation law.

Many of the properties of the orbital angular momentum can be conveniently
represented in terms of vector diagrams. Consider the set of states having a common
value of the quantum number /. For each of these states the length of the orbital
angular momentum vector, in units of 4, is L/h = \//(l + 1). In the same units, the
z component of this vector is L /h = m,. The z component can assume any integral
value from L /h = —Ito L [h = +I, depending on the value of m, The case of
[ =2 is illustrated in Figure 7-12. The figure depicts the angular momentum vectors
for each of the five states corresponding to the five possible values of m, for this value
of /. Since in any one of these states L, and L, fluctuate about their average values of
zero, the vectors describing the state precess randomly in the conical surface sur-
rounding the z axis, satisfying the quantum mechanical angular momentum conserva-
tion law. The actual orientation in space of the angular momentum vector is known
with the greatest precision for the states with m, = 4-/. But even for these states there
is some uncertainty since the vector can be anywhere on a cone of half-angle

cos™1 [1/\/1(1 <+ 1)]. In the classical limit / — oo, and this angle becomes vanishingly
small. Thus, in the classical limit the angular momentum vector for the states m, =
+/ is constrained to lie almost along the z axis and is therefore essentially fixed in
space. This agrees with the behavior predicted by the classical theory, i.e., with the
classical orbital angular momentum conservation law.

The quantum number m, determines the space orientation of the orbital angular
momentum vector of the one-electron atom. Therefore, in a sense it determines the
orientation in space of the atom itself. As the spherically symmetrical Coulomb
potential implies that there is no preferred direction in the space in which the atom is

FIGURE 7-12

Representing the angular momen-
tum vectors (measured in units of 4)
for the possible states with /= 2.
In each state the vector precesses
randomly about the z axis, main-
taining a constant magnitude and a
constant z component.
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situated, we can understand why the theory predicts that the total energy of the atom
does not depend on m;, which determines this orientation. Thus we can understand
why the eigenfunctions are degenerate with respect to the quantum number m,. The
energy of the atom simply does not depend on its orientation in empty space.

7-9 Eigenvalue Equations

Here we shall complete the derivation, started in the previous section, of the orbital angular
momentum quantization conditions. Then we shall generalize the results of the derivation to
point out an interesting feature of Schroedinger’s theory of quantum mechanics.

To study the quantization of the orbital angular momentum, we focus attention first on its z
component, L,. Now, if the z component quantization condition of (7-45) is valid, then any
measurement of L, will always yield the same precise value specified by that quantization
condition

L, =mph (7-47)

Furthermore, measurements of some higher power of L,, say the square L%, will always yield
the same value Li = (mh)*. As a consequence, the expectation value of the square of L, will

be just Ef = (mh)?. Note that, since we also have L, = mh, this means

_— —2
LE=1L, (7-48)
That is, the expectation value of the square of L, equals the square of the expectation value
of L,, if the quantization condition of (7-47) is valid.

On the other hand, if (7-47) is not valid then measurements of L, can lead to various values,
subject, however, to the constraint that the values average out to yield m /i because we have
proven in (7-43) that L, = m,} in any case. If the measured values of L, fluctuate about the
average value mh, then the expectation value of the square of L, will no longer equal the
square of m,f. The reason is that when averaging a higher power of L;, like its square L2 we
give much more weight to the cases in which L, is larger than L,, and much less weight to the
equally numerous cases in which L, is smaller than L,. In this situation L # (mh)?,

L2 # Lf.

An example is shown in Table 7-3, which applies the ideas just discussed to calculating the
square of the average, and the average of the squares, of the ages of a group of children whose
individual ages are 1, 2, and 3 years. Inspection of the table shows that when the ages are first
squared, and then averaged, a larger result is obtained than when the ages are first averaged,
and then squared. This will be true in any case in which a power of the ages higher than the
first is averaged, and in which the ages fluctuate. But if all the children in the group have ages

TABLE 7-3. The Square of the Average, and the
Average of the Squares, of a Set of Fluctuating

Numbers
A=1,2,3
_ 1 +24+3 6
= —— =2
3 3
A =4
A2 =1,4,9
_ 1+4+4+9 14
T = —46
A 3 3 4.67

M=V L =Vaer -2 =067 =082




282  ONE-ELECTRON ATOMS Chap. 7

TABLE 7-4. The Square of the Average, and the
Average of the Squares, of a Set of Nonfluctuating

Numbers

A=2,2,2

f_2¥2+2_6_,
3 3

A=

A2 =4,4,4

;5_4 + 4 +4=1_2_=4
3 3

AA s\/ZE—A'2=\/4_4=o

precisely equal to each other, and therefore to the average age, then it makes no difference in
which order the operations are carried out and the average of the squares equals the square of
the averages. An example of that situation is shown in Table 7-4.

For another illustration of these ideas, consider the quantity Ax = \/ 2 — &, As men-
tioned in Example 5-10, this quantity is used as a measure of the fluctuations that would be
observed in measurements of the x coordinate of a particle. If there were no fluctuations, then

#* = &, But the uncertainty principle demands that there be fluctuations in x (which are
larger the smaller the fluctuations in the linear momentum p). As a result 2% > #, and the

. -5 _2. . . . -5 ~2.
difference between 22 and &~ increases as the fluctuations in x increase so \/ x% — Z”is a measure
of these fluctuations.

. _2
Now, it is easy to prove the validity of the relation expressed by (7-48), Li = L, , andthere-
fore also the validity of the quantization condition L, = m /i of (7-47). To do this we twice use

(7-41), Lzop‘/’nlml = mAipyim,, to calculate L_z Accordingto thethree-dimensionalextension of
the prescription for calculating expectation values, we have

L= f Y*LE W dr

This immediately gives

Lz =f‘l’:lmlL§0p'l’nzml dr

The dynamical quantity L2 is the product of two factors of the form L,
L2=L, L,

According to the expectation value prescription, the operator Liop obtained from that
dynamical quantity is thus the product of two operators of the form L, . Therefore

Ljopwnlml =L -L ‘/"nlmt

Zop z()p

In other words, Lzoptpmml means that Lzop operates twice On ¥y;m,. But according to (7-41)
L, ¥rim, = M Yo,

Thus each operation of L, _on ¢yym, yields the same function ,im,, multiplied by a constant
factor m h. Therefore, the result of two operations is simply to multiply ¥, by two factors of
myh. That is

L:ODWnlmL = (mzh)2§"'nlm,
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Knowing this, we immediately obtain
Lz =fw:lml(mlh)2wnlml dr

= (mzh)2f'l’:lml'l’nlml dr

where we have made use of the fact that the integral over all space of $¥im ¥nim, equals
one because of the normalization condition. Since we have verified (7-48), we have completed
our verification of the quantization condition L, = m/. The proof of the validity of the
quantization condition L? = /(I + 1)/® is carried through in a completely parallel manner.
Note that these proofs depend on (7-41) and (7-42), Lz0 Yoim, = MfiWnim, and Lop%zml =
I+ l)hztpnlm The equations state the surprising facts that the result of operating on the
one-electron atom eigenfunction y,,;,», with the differential operator L, _ is simply to multiply
that eigenfunction by the constant m,ﬁ, while the result of operating on it with the differential
operator L3, is simply to multiply it by the constant /(! + 1)42. These results are certainly not
typical of what happens when a differential operator operates on a function. For instance, if
we operate on a function, say f(x) = «2, with the differential operator d/dx, we obtain a very
different function f’(x) = 2x. As another example, it is not difficult to show that the results of
operating on ¥,im, with the operators L, or L, is to produce new functions of r, 6, ¢ in
which these varlables enter quite dlfferently from the way they enter in the function Ynim, That
is
L%p
L

Ynim, # (CONst)Ypim, (7-49)
Ynim, % (CONS)Ypim, (7-50)

Yop
The ideas that we have developed, in the process of verifying the angular momentum
quantization conditions, can be extended to provide a deeper insight into the theory of
Schroedinger quantum mechanics. They can also be used to lead into the more sophisticated
theories, such as Heisenberg's matrix mechanics. We must leave these matters for more
advanced books. Here we shall say only that the properties associated with (7-41) and (7-42)
are perfectly general. That is, whenever the dynamical quantity f has the precise value F in the
quantum state described by the function v, then that function satisfies the relation

fopy = Fy (7-51)

where f,, is the operator corresponding to f.
We shall also show that the time-independent Schroedinger equation can be written in the
form of (7-51). To do this, consider the time-independent Schroedinger equation in rec-
tangular coordinates
2 2 2 2
B h_ (a y 0%y + o2y
2u

W T T
B2 32 22
|: 2#(3.702 +8—y—2 +8—zz) + V}w = Ey
By comparing (7-3) with (7-4), we see that the square bracket is just the operator ¢, for the
total energy. Thus we have

)+th=Etp

Rewrite it as

e, = Ey

Here E is one of the precise allowed values of the total energy of the system described by the
potential V. The system is also described by the total energy operator e,

The general relation of (7-51) is called an eigenvalue equation, v is said to be an eigenfunction
of the operator f, , and F is said to be the corresponding eigenvalue. This is the same termin-
ology as is used in the particular case of the eigenvalue equation for the total energy operator—
that is, in the case of the time-independent Schroedinger equation. The total energy operator

op 18 sometimes called the Hamiltonian.
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These considerations lead to the important conclusion that, since (7-49) and (7-50) show
Yaim, is not an eigenfunction of the operators er) or Lyon, the corresponding dynamical
quantities L, and L, do not have precise values in the one-clectron atom. That is, L,and L, do
not obey quantization conditions.

QUESTIONS

1. If a hydrogen atom were not at rest, but moving freely through space, how would the
quantum mechanical description of the atom be modified ?

2. Since it is well known that the Coulomb potential has a much simpler form in spherical
polar coordinates, why did we begin our treatment of the one-electron atom in rectangular
coordinates ?

3. In what important equations of classical physics does the Laplacian operator enter?

4. Would the results of the calculations be affected if we took different forms for the
separation constants that arise in the splitting of the time-independent Schroedinger
equation, for the one-electron atom, into three ordinary differential equations?

i

Why must ®(g) be single valued? How does this lead to the restriction that m, must be
an integer?

6. What would happen if we took e~ as the particular solution to the ®(¢) equation?
What about cos m,g or sin mp?

7. Why do three quantum numbers arise in the treatment of the (spinless) one-electron
atom?

8. Can you say what the functions ©(6) and ®(¢) would be like if V were a function of r,
but not proportional to —1/r? (This is the case for the valence electron of an alkali
atom.)

9. Just what is degeneracy?
10. What is the relation between the size of a Bohr atom and the size of a Schroedinger atom?

11. What is the fundamental reason why the size of the hydrogen atom in its ground state has
the value it does?

12. For a one-electron atom in free space, what would-be the mathematical consequences of
changing the choice of direction of the z axis ? The physical consequences? What if the
atom is in an external electric or magnetic field ?

13. Why does a uniform electric or magnetic field define only one unique direction is space?

14, How do the predictions of the Bohr and Schroedinger treatments of the hydrogen atom
(ignoring spin and other relativistic effects) compare with regard to the location of the
electron, its total energy, and its orbital angular momentum?

15. Devise an explanation for the obvious relation between the last two terms of the Laplacian
operator, in spherical polar coordinates, and the operator for the square of the magnitude
of the orbital angular momentum.

16. Using the connection between L and /, explain physically why y*y is very small near
r =0, unless / = 0.

17. Exactly why do we say that for a hydrogen atom in free space the orbitalangular momen-
tum vector precesses randomly about the z axis (ignoring spin)?
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What is the quantum mechanical orbital angular momentum conservation law?

Is every eigenfunction of angular momentum magnitude necessarily also an eigenfunction
of total energy ? Is the reciprocal statement true?

Are examples of eigenvalue equations found in classical physics ? If so, what are they?

PROBLEMS

10.

. Using the technique of separation of variables, show that there are solutions to the

three-dimensional Schroedinger equation for a time-independent potential, which can be
written
W(2,,2, 1) = p(2,y,2)e Bt

where y(z,y,2) is a solution to the time-independent Schroedinger equation.

. Verify that ®(¢) = e*™® is the solution to the equation for ®(¢), (7-15).

. Hydrogen, deuterium, and singly ionized helium are all examples of one-electron atoms.

The deuterium nucleus has the same charge as the hydrogen nucleus, and almost exactly
twice the mass. The helium nucleus has twice the charge of the hydrogen nucleus, and
almost exactly four times the mass. Make an accurate prediction of the ratios of the
ground state energies of these atoms. (Hint: Remember the variation in the reduced mass.)

. (a) Evaluate, in electron volts, the energies of the three levels of the hydrogen atom in the

states for n = 1, 2, 3. (b) Then calculate the frequencies in hertz, and the wavelengths in
angstroms, of all the photons that can be emitted by the atom in transitions between these
levels. (c) In what range of the electromagnetic spectrum are these photons?

. Verify by substitution that the ground state eigenfunction y,4, and the ground state

eigenvalue E, satisfy the time-independent Schroedinger equation for the hydrogen
atom.

. (a) Extend Example 7-4 to obtain from the uncertainty principle a prediction of the total

energy of the ground state of the hydrogen atom. (b) Compare with the energy predicted
by (7-22).

. (a) Calculate the location at which the radial probability density is a maximum for the

n =2,/ = 1 state of the hydrogen atom. (b) Then calculate the expectation value of the
radial coordinate in this state. (c) Explain the physical significance of the difference in the
answers to (a) and (b). (Hint: See Figure 7-5.)

. (a) Calculate the expectation value ¥ for the potential energy in the ground state of the

hydrogen atom. (b) Show that in the ground state E = V2, where E is the total energy.
(c) Use the relation E = K + Vto calculate the expectation value K of the kinetic energy
in the ground state, and show that K = —V/2. These relations are obtained for any
state of motion of any quantum mechanical (or classical) system with a potential in the
form V(r) « —1/r. They are sometimes called the virial theorem.

. (a) Calculate the expectation value ¥V of the potential energy in the n = 2, = 1 state of

the hydrogen atom. (b) Do the same for the n = 2, / = 0 state. (c) Discuss the results of
(a) and (b), in connection with the virial theorem of Problem 8, and explain how they bear
on the origin of the / degeneracy.

By substituting into the equation for R(r), (7-17), the form R(r) « r!, show that it is a
solution for r — 0. (Hint: Ignore terms that become negligible relative to othersasr — 0.)



286  ONE-ELECTRON ATOMS Chap. 7

11.

12.

13.
14.

15.

16.

17.

Show that the sum of hydrogen atom probability densities for the n = 3 quantum states,
analogous to the sum in Example 7-5, is spherically symmetrical.

Show that ®(p) = cos m,p, and ®(p) = sin m,p, are particular solutions to the equation
for ®(¢), (7-15).

By using the techniques of Appendix I show that L, has the form stated in (7-37).
y g q PP op

Prove that Lgpwnlml =1+ l)hzzpnlml. (Hint: Use the differential equation satisfied by
Oym,(6), (7-16).)

We know that ¢ = ¢ is an eigenfunction of the total energy operator e, for the one-
dimensional problem of the zero potential. (a) Show that it is also an eigenfunction of the
linear momentum operator p,,, and determine the associated momentum eigenvalue.
(b) Repeat for y = e~%=, (c) Interpret what the results of (a) and (b) mean concerning
measurements of the linear momentum. (d) We also know that y = coskx and v =
sin kx are eigenfunctions of the zero potential e,,. Are they eigenfunctions of p,,?
(e) Interpret the results of (d).

All four of the functions '™, e~"™%, cos m, @, and sin m, @ are particular solutions to the
equation for ®(¢), (7-15) (see Problem 12). (a) Find which are also eigenfunctions of the
operator for the z component of angular momentum L, . (b) Interpret your results.

A particle of mass 4 is fixed at one end of a rigid rod of negligible mass and length R.
The other end of the rod rotates in the -y plane about a bearing located at the origin,
whose axis is in the z direction. This two-dimensional “rigid rotator” is illustrated in
Figure 7-13. (a) Write an expression for the total energy of the system in terms of its

y
R
FIGURE 7-13
The rigid rotator moving in the z-y ¢ ")
plane considered in Problem 17. (3

18.

angular momentum L. (Hint: Set the constant potential energy equal to zero, and then
express the kinetic energy in terms of L.) (b) By introducing the appropriate operators
into the energy equation, convert it into the Schroedinger equation

12 (g, 1) 5 (g, 1)
T et T

where I = uR? is the rotational inertia, or moment of inertia, and ¥'(g, #) is the wave
function written in terms of the angular coordinate ¢ and the time 7. (Hint: Since the
angular momentum is entirely in the z direction, L = L, and the corresponding operator
is L, = —ifid[2¢.)

By applying the technique of separation of variables, split the rigid rotator Schroedinger
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equation of Problem 17 to obtain: (a) the time-independent Schroedinger equation
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and (b) the equation for the time dependence of the wave function
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In these equations E = the separation constant, and ®(¢)T(t) = ¥ (g, 1), the wave
function.

(a) Solve the equation for the time dependence of the wave function obtained in Problem
18. (b) Then show that the separation constant E is the total energy.

Show that a particular solution to the time-independent Schroedinger equation for the
rigid rotator of Problem 18 is ®(p) = '™ where m = \/21E/A.

(a) Apply the condition of single valuedness to the particular solution of Problem 20.
(b) Then show that the allowed values of the total energy E for the two-dimensional
quantum mechanical rigid rotator are
h%m?
- = 2,3,...
E 37 lm| =0,1,2,3,

(c) Compare the results of quantum mechanics with those of the old quantum theory
obtained in Problem 34 of Chapter 4. (d) Explain why the two-dimensional quantum
mechanical rigid rotator has no zero-point energy. Also explain why it is not a completely
realistic model for a microscopic system.

Normalize the functions ®(¢) = ¢!™? found in Problem 21.

(a) Calculate the expectation value of the angular momentum, Z, for a two-dimensional
rigid rotator in a typical quantum state, using the eigenfunctions found in Problem 22.

— -2
(b) Then calculate L?and L , and interpret what your results have to say about the values
of L that would be obtained in a series of measurements on the system.





